所在位置: 首頁> 技術文章> 技術咨詢>

          產品中心
          PRODUCT CENTER

          • 聯系人 : 曹鏡森先生
          • 聯系電話 : 0769-82226193
          • 傳真 : 0769-82226193
          • 移動電話 : 15989458768
          • 地址 : ** 廣東省東莞市大朗鎮仙村仙一區99號
          • Email : caojingshen@126.com
          • 郵編 : 523792
          • 公司網址 : http://www.jdksjx.com
          • MSN : caoshingcer@126.com
          • QQ : 454992321
          • 聯系人 : 曹鏡森
          • 聯系電話 : 0769-82226193
          • 傳真 : 0769-82226193
          • 公司網址 : http://www.jdksjx.com/
          文章詳情

          Crystallization and drying of PLA after granulation

          日期:2025-07-01 22:04
          瀏覽次數:27
          摘要:Crystallization and drying of PLA after granulation,PLA crystallization stirring dehumidification dryer,PLA crystallization

          Crystallization and drying of PLA after granulation,PLA crystallization stirring dehumidification dryer,PLA crystallization

          **Crystallization and Drying of PLA After Granulation: An Overview**  


          Polylactic acid (PLA), a biodegradable and bio-based thermoplastic derived from renewable resources (e.g., corn starch or sugarcane), is widely used in eco-friendly packaging, 3D printing filaments, disposable products, and medical applications. After granulation—the process of converting molten PLA into uniform pellets—the material requires specialized **crystallization** and **drying** to ensure optimal thermal stability, moisture resistance, and processability. These steps are critical to overcoming PLA’s inherent hygroscopicity and semi-crystalline nature, which, if unaddressed, lead to defects such as bubbles, brittleness, or dimensional instability during subsequent processing (e.g., extrusion, injection molding).  


          ---


          ### **1. Crystallization of PLA**  

          **Purpose:**  

          PLA pellets produced via granulation are typically amorphous or partially crystalline. Crystallization enhances the material’s thermal resistance, mechanical strength, and dimensional stability, preventing deformation or sticking during high-temperature processing.  


          **Process Parameters:**  

          - **Temperature:** Controlled heating within **90–120°C**, tailored to the PLA grade.  

          - **Residence Time:** 1–4 hours, depending on desired crystallinity (typically >40%).  

          - **Agitation:** Mechanical stirring or fluidized bed systems ensure uniform heat distribution and prevent pellet agglomeration.  


          **Mechanism:**  

          Heating PLA above its glass transition temperature (Tg ≈ 60°C) but below its melting point (Tm ≈ 150–180°C) allows polymer chains to reorganize into ordered crystalline regions. This phase change reduces the material’s susceptibility to moisture absorption and improves heat resistance (e.g., for hot-fill packaging applications).  


          ---


          ### **2. Drying of PLA**  

          **Purpose:**  

          PLA pellets are highly hygroscopic, absorbing ambient moisture rapidly. Residual moisture (>0.025% or 250 ppm) causes hydrolysis during processing, degrading molecular weight, weakening mechanical properties, and introducing defects.  


          **Process Parameters:**  

          - **Dew Point:** Ultra-dry air with a dew point of **-40°C to -50°C**, generated by desiccant dehumidifiers (e.g., molecular sieve).  

          - **Temperature:** Gentle drying at **60–80°C** to avoid thermal degradation.  

          - **Residence Time:** 2–6 hours, depending on initial moisture content.  


          **Mechanism:**  

          A closed-loop dehumidification system circulates dry, heated air through the PLA pellets, extracting moisture from their surface and core. Moisture-laden air is regenerated by passing through a desiccant bed, ensuring continuous drying efficiency.  


          ---


          ### **Integrated Equipment**  

          Modern systems combine crystallization and drying into a single unit for streamlined processing:  

          - **Crystallization Chamber:** Equipped with agitators or paddles to ensure uniform heating and prevent bridging.  

          - **Dehumidification Hopper:** Features desiccant beds, precise temperature control, and moisture sensors.  

          - **Automation:** Programmable logic controllers (PLCs) monitor and adjust temperature, airflow, dew point, and residence time.  


          ---


          ### **Key Benefits**  

          - **Enhanced Thermal Stability:** Crystallized PLA withstands higher temperatures without deforming, ideal for applications like hot beverage cups.  

          - **Moisture Resistance:** Drying reduces hydrolysis risk, preserving PLA’s mechanical strength and biodegradability.  

          - **Improved Processability:** Prevents pellet clumping, ensuring smooth feeding into extruders or injection molders.  

          - **Sustainability:** Supports efficient recycling of post-industrial or post-consumer PLA waste.  


          ---


          ### **Applications**  

          - **Packaging:** Rigid food containers, transparent films, and compostable wraps.  

          - **3D Printing:** High-quality PLA filaments with consistent diameter and minimal warping.  

          - **Medical Devices:** Sterilizable implants and sutures requiring precise material properties.  

          - **Disposables:** Cutlery, cups, and straws meeting biodegradability standards.  


          ---


          ### **Challenges & Solutions**  

          - **Thermal Degradation:** Overheating during crystallization can degrade PLA. Solution: Precise temperature control with multi-zone heating.  

          - **Moisture Reabsorption:** PLA pellets rehydrate quickly in humid environments. Solution: Closed-loop conveying to processing equipment.  

          - **Energy Efficiency:** Advanced systems recover heat from crystallization for drying, reducing energy consumption by 20–30%.  


          ---


          ### **Conclusion**  

          The crystallization and drying of PLA after granulation are indispensable steps for unlocking the full potential of this sustainable polymer. By transforming amorphous, moisture-laden pellets into thermally stable, low-moisture material, these processes enable high-performance manufacturing across industries while aligning with global sustainability goals. As demand for biodegradable plastics grows, optimized crystallization and drying technologies will remain pivotal in advancing the circular economy and reducing reliance on fossil-fuel-based plastics.


          粵公網安備 44190002002288號

          久久99久久精品视频| 精品国内自产拍在线视频| 中文字幕日韩精品麻豆系列| 国产麻豆精品久久一二三| 下载天堂国产AV成人无码精品网站 | 亚洲精品无码AV中文字幕电影网站| 国产手机精品视频| 国产精品成人免费一区二区| 精品国产一二三区在线影院| 久久亚洲AV无码精品色午夜| 99久久精品免费精品国产| 久久久久久国产精品三级| 久久精品国产99国产精偷| 丰满人妻熟妇乱又伦精品视| 久久99精品九九九久久婷婷| 亚洲精品天堂成人片?V在线播放| 精品无码中出一区二区| 日韩精品久久不卡中文字幕| 日韩亚洲产在线观看| 久久久久国产日韩精品网站| 国产精品久久久久国产精品| 在线亚洲精品视频| 成人99国产精品| 国产精品久久久久久久久电影网 | 亚洲精品V天堂中文字幕| 国产精品分类视频分类一区| 亚洲精品视频在线观看免费| 久久99国产精品尤物| 91大神精品视频| 2021国产成人午夜精品| 国产精品久久自在自线观看| 精品久久久久久久无码| 国产精品制服丝袜一区| 模特私拍国产精品久久| 无码精品A∨在线观看免费| 无码人妻精品中文字幕免费东京热| 国产chinesehd精品酒店| 中文字幕av日韩精品一区二区| 亚洲A∨精品一区二区三区下载| 久久精品女人天堂AV免费观看| 国产精品午夜无码AV天美传媒|